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Extra-tropical Cloud Feedbacks

and Climate Sensitivity

Cloud Feedback = How Cloud Radiative
Effects Change with Climate Warming

Climate Sensitivity = How Much
Warming Will Result from a Given
Increase in Radiative Forcing (i.e., CO;)

Latest Climate Models Have Increased
Climate Sensitivity Which Is Due to an
Increase in the Feedbacks from Extra-
tropical Low Clouds

What do we believe about these
changes in cloud feedbacks and
climate sensitivity?
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Processes at Play in Extra-Tropical
Cloud Feedbacks in Climate Models

1. Extratropical Cloud Phase Feedback

2. Aerosol-mediated Cloud Feedback in the Southern Ocean



1. Extra-tropical Cloud Phase Feedback

Model 1 (TOlder Models) Model 2 (“"Newer Models)

Less Supercooled Liquid and More Ice Model With More Supercooled Liquid and Less Ice

Tcold < Twarm Tcold = Twarm

warming warming

Clouds Get Brighter With Warming Clouds Unchanged With Warming
More Reflection of Solar Radiation With Warming Unchanged Reflection of Solar Radiation With Warming
Negative Cloud Feedback Zero Cloud Feedback

Tan et al. 2016, Frey and Kay 2017, Bodas-Salcedo et al. 2019, Gettelman et al. 2019



2. Aerosol-mediated Cloud Feedback in the Southern Ocean
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Key Question

What processes determine the radiative properties (water
aths and particle sizes of ice and liquid) of extra-tropical
ow clouds and how they change with warming?

* Cloud Microphysical Processes: ice processes influencing cloud
phase (e.g., WBF! or SIP? processess), liquid-phase precipitation®

* Aerosol-Cloud Interactions: cloud droplet nucleation*, ice
nucleating particles!?)

* Radiative, Turbulent, and Convective Processes: cloud-top
radiative cooling®, entrainment, convection’, boundary layer mixing

* Large-scale water-vapor convergence by extra-tropical cyclones?®

ITan et al. 2016, 2Zhao et al. 2021, 3Muhlmendstadt et al. 2021, *Bodas-Salcedo et al. 2019, >Morrison et al. 2005,
Field et al. 2014, Furtado et al. 2016, “Kay et al. 2016, EMcCoy et al. 2020



How Can Observations Help? (just an incomplete list ..

Satellite observations

* What is the global extent of supercooled liquid clouds? (from Calipso
observations) (Hu et al. 2010)

* How much dprecipi’ra’rion occurs in warm and super-cooled clouds?
(FI"OITI Cloudsat observa’rlons) (Haynes et al. 2009, Mcllhattan et al. 2017)

* How does cloud optical depth change with temperature? (Gordon and Klein
2014, Terai et al. 2016)

In-situ / Ground-based ARM data

* How much precipitation occurs in clouds with super-cooled liquid?
(Silber et al. 2021)

* How do extra-tropical cloud properties (e.g., Iiguid and ice) vary with

temperature and its fine structures as revealed by soundings? (Teraiet
al. 2019)



Mechanisms Behind the Extratropical Stratiform

JGR Atmospheres Low-Cloud Optical Depth Response
to Temperature in ARM From SGP, ENA, and NSA data
Terai et al. (2019) Site Observations

C.R. Terai'" ,Y.Zhang!,S. A. Klein® , M. D. Zelinka® ,J.C.Chiu? ,and Q. Min?
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What will the recent ARM campaigns (AWARE,
MARCUS, MICRE, COMBLE) reveal about extra-

tropical clouds and the processes governing
them?
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(A) Liquid Condensate Fraction
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Extra-tropical Cloud
Phase in Climate Models
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Using Satellite Observations to Constrain the
Extratropical Cloud Optical Depth Feedbacks

e Op:cical depth response Optical Depth
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